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Abstract. The densities of states and the associated characteristic functions of fixed-trace
ensembles (FTEs) ofN×N random matricesMN, (tr(M+

NMN) = constant), are calculated exactly
at finiteN in the case of real-symmetric matrices and of Hermitian matrices. The exact radial density
is calculated at finite N for fixed-trace ensembles of complex matrices with no further restrictions
on the entries. The density calculated in the Hermitian case coincides with very recent literature
results. The exact finite-N density of states of any ensemble of N × N random matrices of a
given symmetry, whose probability density depends only on tr(S+

NSN), is simply obtained from
the density of the FTE of the same symmetry by a one-dimensional integral.

1. Introduction

Random matrix theory (RMT), which has been for decades, and is yet, of primary importance in
multivariate statistical analysis [1], has also found significant uses in various other fields [2,3].
It finds, for instance, considerable use in various branches of physics, notably in nuclear
physics, quantum chaology and for investigating Hamiltonians of disordered and strongly
interacting quantum systems [2, 3] and references therein.

Most applications of RMT in physics deal with large-N matrices. Among the ensembles
ofN ×N random matrices SN , three Gaussian ensembles have been studied extensively [2,3]
and are still investigated [4]. Their probability densities are proportional to exp(− tr(S2

N))

where tr means trace. Matrices are real symmetric for the Gaussian orthogonal ensemble
(GOE), Hermitian for the Gaussian unitary ensemble (GUE) and quaternion self-dual for the
Gaussian symplectic ensemble (GSE) [3].

Besides applications of large-N matrices, there are physical investigations, notably of
disordered solids, which benefit or might benefit from a knowledge of exact properties of
ensembles of random matrices at finite N , most often N = 2, 3. Many properties of interest
in concentrated crystalline alloys, glasses, nanostructured materials, quasicrystals are, for
instance, either represented by second-rank tensors in 3D or involve them. A non-exhaustive
list includes electric field gradients at nuclei of many isotopes that are investigated by NMR,
NQR, PAC and Mössbauer spectroscopy or are modelled ( [5–10] and references therein),
spin Hamiltonian parameters that are investigated by EPR [11], demagnetizing tensor [12],
magnetic dipolar tensors and fields [13, 14], atomic level stresses in models of disordered
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solids [15, 16] and dispersion tensor in homogeneous porous media [17, 18]. Many papers
among those quoted above use, explicitly or implicitly, characteristics established for random
matrix ensembles (RMEs) while other published results might as well be derived from them
(see [10] and references therein for the case of electric field gradients). The zero probability of
finding an electric field gradient with an asymmetry parameter equal to zero in many disordered
structures originates from correlations due to the Jacobian [7, 10] as does the level-repulsion
found in RMT [2,3]. The distributions of local atomic stresses in models of amorphous solids as
given in appendix B of [15] are, for instance, directly obtained from the GOE withN = 3 [16].
Moreover, new investigations might profit from a comparison with general results established
for finite-N RMEs. For instance, distributions of characteristics of the dispersion tensor and not
only average properties might be investigated in the case of convection–diffusion phenomena.
A final illustrative example is that of electric field gradients produced by a random distribution
of unscreened point defects in cubic solids [8]. The distribution of the electric field gradient
tensor, represented here by a 3×3 matrixV with tr V = 0, isp(V ) ∝ exp(−c2 tr(V 2)) for large
defect concentrations while it is p(V ) ∝ (a2 +b2 tr(V 2))−3 for small defect concentrations [8].
A calculation of characteristics of RMEs, named spherical ensembles in [19], whose probability
densities, g(tr(S+

NSN)), depend only on tr(S+
NSN) where S+

N is the Hermitian conjugate of SN
is thus of interest also for finite values of N .

Gaussian ensembles are notable members of the family of spherical ensembles [19].
They are indeed the only spherical ensembles which have independent matrix entries as
deduced from the Porter–Rosenzweig theorem [3]. The latter theorem states indeed that
ensembles of random matrices which are invariant under a change of basis and whose entries
are statistically independent are Gaussian. Characteristics of spherical ensembles can be
derived from those of fixed-trace ensembles, called hereafter FTEs, that were first defined by
Rosenzweig and Bronk ( [20, 21] as quoted in [3, ch 19]), by tr(S+

NSN) = constant with no
other constraint. The link between spherical ensembles and FTEs stems from the fact that FTEs
are associated [19] with the uniform distribution of a random vector on an Np-dimensional
unit sphere surface whose properties are described in [22]. We define Np as being the number
of distinct real random variables which are necessary to construct a N × N matrix SN of a
given symmetry (real-symmetric, Hermitian, antisymmetric Hermitian, complex, etc). The
stochastic representation (section 2) which links N ×N random matrices GN from Gaussian

ensembles to N ×N random matrices MN of the FTE of the same symmetry is GN
d= RMN ,

whereA
d= B means that the random matricesA and B are identically distributed. The matrix

MN is associated with a vector U(Np) uniformly distributed over the surface of the unit sphere
in IRNp in the way described in section 2 while R2 is χ2 distributed with Np degrees of
freedom and is independent of U(Np). Fixed-trace ensembles bear the same relationship to
Gaussian ensembles that the microcanonical ensemble to the canonical ensembles in statistical
physics [23]. Akemann et al [24] describe further interesting physical features of FTEs due to
the interaction among eigenvalues introduced through a constraint. The previous arguments
explain the interest of deriving exact characteristics of FTEs at finite N . The method we
have used to derive them is based on the stochastic representation mentioned above which
leads to integral relations between the characteristics of the Gaussian ensembles and of FTEs.
These relations, expressed as Laplace transforms, give by inversion the expected densities of
states. The present paper focuses on densities of states while other characteristics, for instance
determinant distributions [25], have been or might be derived from similar methods.

Our purpose is thus to derive exact densities of states �M(λ) for real-symmetric and
Hermitian FTEs and the exact radial density �M(r) for the complex FTE. Little before the very
end of the present investigation which is a sequel of the previously quoted work [19], a paper
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of Akemann et al [24] was published on (generalized) restricted trace ensembles of Hermitian
matrices which also include fixed-trace ensembles [3]. The exact density of states which we
obtained independently for the unitary ensemble called here FTE(2) is identical with the one
given by the latter authors who further derive the two-eigenvalue correlators [3, 26]. As our
aims and the method used differ from those of [24], we still describe briefly the results for the
unitary ensemble as it further exemplifies the type of calculations needed for the orthogonal
ensemble. Theoretical densities of states of FTEs of real-symmetric matrices and of Hermitian
matrices and radial densities of complex random matrices are compared with results of Monte
Carlo simulations.

2. The ingredients of the method

For real-symmetric matrices and for Hermitian matrices, the number of distinct real random
variables Np is given by

Nm = N(N − 1)/2 Np = N + βNm (2.1)

with the parameter β = 1, 2 respectively [2, 3]. The distinct elements needed to construct
the considered N × N matrices HN are indeed (i, j = 1, . . . , N){Hij , (j � i)} for β = 1
and {Hii,Re (Hij ), Im (Hij ), (j > i)} for β = 2 while they are {Re (Hij ), Im (Hij )} for
complex matrices (Np = 2N2). After having presented some classical results on Gaussian
ensembles [3] from which we will derive the FTEs densities of states in the next section,
we establish general relations between the densities of states of spherical RMEs of a given
symmetry and that of the FTE of the same symmetry. To simplify the notations in the following,
X(β) or Xβ means that symbol X is associated with ensembles of real-symmetric (β = 1)
matrices or of Hermitian matrices (β = 2)whileX(c) orXC is used for ensembles of complex
N ×N matrices with no further restrictions on the entries. Moreover, I[a,b](x) is an indicator
function whose value is 1 if a � x � b and 0 otherwise.

2.1. Gaussian ensembles

A random variable whose distribution is Gaussian with a zero mean and a variance σ 2 is
hereafter denoted as N(0, σ 2). For the GOE and the GUE, the Np variables which constitute
the matrix elements Sij are independent N(0, σ 2(1 + δij )/2) variables (i = 1, . . . , N, j =
i, . . . , N). The GO(U)E probability density function is then

gβ(SN) = KN(β) exp(− tr(S2
N)/(2σ

2)) (2.2)

where KN(β) is a normalization constant. Their average densities of states �Gβ(λ) are given
by Mehta [3] for variances σ 2 = 1/β.

(1) For the GUE (β = 2, σ = 1/
√

2):

�G2(λ) = 1

N

N−1∑
j=0

ϕ2
j (λ) (2.3)

with

ϕj (λ) = (2j j !
√
π)−1/2 exp(−λ2/2)Hj (λ) (2.4)

where Hj(λ) is the Hermite polynomial of order j [3]. As shown by Ullah [27], the
characteristic function φG2(t) of �G2(λ) is simply

φG2(t) = 〈eiλt 〉G2 =
∫ +∞

−∞
eiλt�G2(λ) dλ = 1

N
e−t2/4L1

N−1

(
t2

2

)
(2.5)

where L1
N−1(x) is a Laguerre polynomial [28].
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(2) For the GOE (β = 1, σ = 1), the density of states [3, 29] can be written as

�G1(λ) = 1

N

{ N−1∑
j=0

ϕ2
j (λ)

}
+

1

2N+1*(N2 + 1)
e−λ2

HN−1(λ)RN(λ) (2.6)

with

RN(λ) =
√

2 exp

(
λ2

2

)
−

[ N2 ]∑
m=0

H2m(λ)

22m−1m!
(2.7)

if N is odd ([x] stands for the largest integer less than or equal to x). Using equation (16)
of [29], RN(λ) is similarly calculated when N is even:

RN(λ) =
√

2 exp

(
λ2

2

)
erf

(
λ√
2

)
−

N
2 −1∑
m=0

H2m+1(λ)

22m*(m + 3
2 )
. (2.8)

The characteristic functionφG1(t) [29], which involves infinite sums, is given by (2.9) after
correcting some errors in equation (23) of [29]. Equation (2.9) is obtained from a Fourier
transform of the GOE density of states (equation (11) of [29]) using integral 7.388.7
of [28]:

φG1(t) = e−t2/4

N
L1
N−1(t

2/2)− e−t2/4

2N

(
*(N+1

2 )(N − 1)!

*(N2 )

)1
2

×
∞∑
k=0

(
*(k + 1 + N

2 )

*(k + N+3
2 )(2k +N + 1)!

)1
2
(−1)k

2k
t2k+2L2k+2

N−1

(
t2

2

)
. (2.9)

It is possible to write (2.9) in a simpler way for N = 2p + 1. From integrals 7.388.4
and 7.388.7 of [28], the Fourier transform of the density (equations (2.6) and (2.7)) is
indeed

φG1(t) = e−t2/4
(
L1

2p(t
2/2)

(2p + 1)
− 1

2*(p + 3
2 )

p∑
k=0

*

(
p − k +

1

2

)(
− t2

4

)k

×L2k
2m−2k

(
t2

2

))
+ e−t2/2

√
π(−1)pH2p(t)

22p+1*(p + 3
2 )

. (2.10)

The empirical GO(U)E eigenvalue distribution functionFN(λ) = (number of eigenvalues
�λ)/N tends asymptotically to a distribution whose probability density is �W(λ) [29],
the Wigner semicircle, whose scale parameter is its ‘radius’ a [3]:

�W(λ) = (2/πa2)(a2 − λ2)1/2I[0,a2](λ
2) (2.11)

where a2 is related to σ 2 (equation (2.2)) by a2 = 2βNσ 2 (end of appendix A). Its
characteristic function is

φW(t) = 〈eiλt 〉W =
∫ +a

−a
eiλt�W (λ) dλ = 2

at
J1(at) (2.12)

where J1(x) is a Bessel function of the first kind.
(3) The eigenvalues are complex for Gaussian complex N × N matrices with no further

restrictions on the entries, that is with Np = 2N2. When the real and imaginary
parts of all matrix elements are independent N(0, σ 2/2) random variables, gc(SN) ∝
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exp(− tr(SNS+
N)/σ

2), the ensemble averaged fraction of eigenvalues located at a distance
r � R � r + dr from the origin in the complex plane is pGC(r) dr = 2πr�GC(r) dr with

�GC(r) = 1

Nπσ 2
exp

(
− r2

σ 2

){ N−1∑
k=0

(r/σ )2k

k!

}
(2.13)

as calculated by Ginibre (see [3]). For N → ∞ and σ 2 = σ 2
G/N , the density �GC(r) is

constant and equal to 1/(πσ 2
G) on a disc of radius σG.

2.2. Spherical distributions of random vectors [22, 30–32]

The distribution of a randomNp-dimensional vector X(Np) is called spherically symmetric [22,
31] or in short spherical [32] if its characteristic function is

φ(t) = 〈exp(it · X(Np))〉 = φ(t) (2.14)

for all real Np-dimensional vectors t, where t is the modulus of t, t = [
∑Np

k=1 t
2
k ]1/2, or

equivalently if it is invariant by any orthogonal transformation of O(Np). Any spherical
distribution of a random vector is in particular invariant by every permutation of its components.
The density of X(Np) depends only on ‖X(Np)‖ whatever Np, as its characteristic function
depends only on the modulus t of t and conversely [22, 30–32]. For the spherical case, the
Schoenberg theorem states that φ(t) is given by (2.14) if and only if it is represented by [22,30]

φ(t) =
∫ ∞

0
/Np(rt) dPNp (r) (2.15)

for some distribution PNp(r), where /Np(t) is the characteristic function of a vector U (Np)

which is uniformly distributed on the surface of the unit sphere in IRNp [22, 30–32].
An equivalent characterization of spherical random vectors is given by their stochastic
representation [1, 22, 31, 32]:

X(Np) d= RU (Np) (2.16)

where A
d= B means that the random vectors A and B are identically distributed and R is

some non-negative random variable independent of U (Np). Some characteristics of the uniform
distribution of U (Np) on the unit sphere surface are given in appendix A.

2.3. Application to ‘spherical’ ensembles of random matrices

To apply the results of the previous section to random matrices, it suffices to use the
isomorphism between the space ofN×N matrices and the Euclidean space IRNp as described
in detail in [19] and as exemplified by (2.18) below.

Each matrix HN is put in a one-to-one correspondence with a vector X(Np) of IRNp ,
denoted X(Np) = Vect(HN), in such a way that the usual Euclidean norm of X(Np) is equal to
the norm ofHN , ‖HN‖ = (tr(H +

NHN))
1/2. The components of X(Np) are constructed from the

distinct elements of HN . A way, among many, of establishing a one-to-one correspondence
between the distinct matrix elements of HN and the components of X(Np) is first to form a
matrix VN whose diagonal elements are identical with those of HN and whose off-diagonal
elements are

√
2 times the off-diagonal elements of HN for β = 1, 2 while VN = HN in the

complex case. The distinct elements of the columns of VN are then stacked one under the other
to form a single column. The components of X(Np) are thus (V11, V12, V22, V13, V23, V33, . . .)

in the real symmetric case, (V11,Re (V12), Im (V12), V22,Re (V13), Im (V13),Re (V23),
Im (V23), V33, . . .) in the Hermitian case and (Re (V11), Im (V11),Re (V21), Im (V21), . . . ,
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Re (VN1), Im (VN1),Re (V12), Im (V12),Re (V22), Im (V22), . . .) in the complex case. The
inverse transformation from X(Np) to HN is denoted as HN = Mat(X(Np)). The probability
density of SN = Mat(X(Np)), if it exists, is consequently g(tr(S+

NSN)) if X(Np) is a spherical
Np-dimensional vector as the Jacobian of the transformation from the probability distribution
of the components of X(Np), which depends only on ‖X(Np)‖, to the probability distribution
of the distinct matrix elements of HN is a constant. By extension the latter RMEs have been
named ‘spherical’ [19]. When the Mat transformation is applied to both sides of (2.16), it
becomes

SN
d= RMN. (2.17)

The probability densities of the elements of SN of a given symmetry are thus deduced to be
mixtures of the probability density of the matrix elements of MN , MN = Mat(U (Np)), which
has the same symmetry as SN .

From vectors U (Np) uniformly distributed on the surface of the unit Np-dimensional
sphere with Np = 3, 4, 8, we construct, for instance, the following FTEs M2(β) and M2(c)

respectively:

M2(1) =
(

U(1) U(2)/
√

2
U(2)/

√
2 U(3)

)
,

M2(2) =
(

U(1) (U(2) + iU(3))/
√

2
(U(2)− iU(3))/

√
2 U(4)

)
and

M2(c) =
(
U(1) + iU(2) U(5) + iU(6)
U(3) + iU(4) U(7) + iU(8)

)
(2.18)

where U(k) is the kth component of the unit vector U (Np)(
∑Np

k=1 U(k)
2 = 1 = tr(MNM

+
N)).

The distribution of t = tr(MN(β))/
√
N(−1 � t � 1, β = 1, 2) is obtained in appendix A as

*(Np/2)√
π*((Np−1)/2) (1−t2) Np−3

2 . We note the densities of states �Mβ(λ) in the case of real eigenvalues
(FTE(β)) while the radial density is named �MC(r) in the case of the complex RME studied
here (FTE(c)). The distinct elements of the matrices of the FTEs are not independent as
they are related through tr(MNM

+
N) = 1 but their pair correlations are zero. The mixed

moments 〈∏Np
k=1 U(k)

mk 〉(mk � 0) are indeed equal to zero if at least one of the mk is odd
as shown in [22, p 72]. The average of every FTEs matrix element and the pair correlation
between two distinct matrix elements are thus zero as 〈U(j)〉 and pair correlations of the form
〈U(j)U(k)〉are zero whatever j, k with j = k.

2.4. The exact density of states of spherical ensembles

A transformation of both sides of (2.17), as done usually for Gaussian ensembles [3], from a
probability distribution of matrix elements to a joint distribution of eigenvalues and the removal
of identical factors in both members yields after integration over N − k eigenvalues

�Sβ(vk) =
∫ ∞

L

�Mβ(vk/r)
dF (r)

rk

vk = (λ1, λ2, . . . , λk)

(2.19)

whatever 1 � k � N . In (2.19) dF(r) is the probability of finding a Np-dimensional sphere
of radius r � R � r + dr . If we assume that there is a density g(tr(S+

NSN)) for the distribution
of the considered spherical RME, then dF(r) = f (r) dr where f (r) is calculated to be

f (r) ∝ r(Np−1)g(r2) (2.20)
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by expressing distinct matrix elements in terms of spherical coordinates with r2 = tr(S+
NSN)

and angles (0 � ϕj � π, j = 1, . . . , Np − 2, 0 � ϕNp−1 � 2π).
The lower integration limit depends both onF(r) and on vk . Iff (r) is defined, for instance,

on (0,∞), then L = ‖vk‖ = (
∑k

j=1 λ
2
j )

1/2. The densities �Mβ(vk) are reference k-eigenvalue
densities of the corresponding FTE(β) ensembles. Equation (2.19) simply expresses the fact
that the total density is the sum of rescaled densities �r,Mβ(vk) associated with spheres of radii
r , namely �r,Mβ(vk) = �Mβ(vk/r)/r

k , with varying weights f (r) dr . For a given vk , only the
densities �r,Mβ(vk) with r � ‖vk‖ contribute to the total density �Sβ(vk) as

�Mβ(vk) = 0 for ‖vk‖ > 1. (2.21)

The relation between the density of states of the spherical ensemble SN(β) and that of FTE(β)
is in particular found to be

�Sβ(λ) =
∫ ∞

|λ|
�Mβ

(
λ

r

)
f (r)

r
dr. (2.22)

The distribution �Mβ(λ) is even as both vectors U (Np) and −U (Np) are equally probable. In
the case of complex spherical RMEs, (2.22) is replaced by a relation between radial densities
(section 2.1) (�MC(r) = 0 for r > 1):

�SC(r) =
∫ ∞

r

�MC

( r
x

) f (x)
x2

dx (r � 0). (2.23)

Once �Mβ(λ) and �MC(r) are known, equations (2.22) and (2.23) yield the exact densities of
states of the investigated spherical ensembles. The purpose of section 3 is thus to derive exact
densities �Mβ(λ) and �MC(r) from those of the Gaussian ensembles of the same symmetry.

2.5. Monte Carlo simulations

Monte Carlo simulations were performed to generate matrices MN = Mat(U (Np)) for real-
symmetric, Hermitian and complex FTEs respectively. The random vector U (Np) was obtained

from the stochastic representation, U (Np)
d= G(Np)/‖G(Np)‖ [22,31,32], where G(Np) is a Np-

dimensional vector whose components are identically and independently distributed N(0, 1)
Gaussian random variables. The G(Np) components were generated by the classical Box–
Müller method [33].

3. The density of states of FTE(β) and of FTE(c)

As emphasized in the introduction, Gaussian ensembles are notable members of the spherical
family for which exact eigenvalue densities have been reported. It is the latter knowledge
which is the basis of the following calculation.

By definition, a χ2 distribution with n degrees of freedom is the law of the sum of
the squares of n independent N(0, 1) Gaussian random variables [34]. The distributions
of z = tr(S2

N)/σ
2 and of z = 2 tr(SNS+

N)/σ
2 are thus χ2 distributions with Np degrees of

freedom for the GOE, GUE and complex Gaussian ensembles respectively. When applied to
the Gaussian ensembles considered in the present paper, (2.17) reduces to

GN
d= RMN (3.1)

where GN is a matrix from the GOE, the GUE or the complex Gaussian ensemble, R2/σ 2

(GOE, GUE) and 2R2/σ 2 (complex case) are χ2 distributed with Np degrees of freedom and
MN is a matrix of the same symmetry asGN associated with a vectorU(Np) which is uniformly
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distributed on the surface of the unit sphere in IRNp . Equations (2.20), (2.22) and (2.23)
(symbol S being replaced by G) then become for Gaussian ensembles

�Gβ(λ) = 1

2
Np

2 −1σNp*(
Np
2 )

∫ ∞

|λ|
xNp−2 exp

(
− x2

2σ 2

)
�Mβ

(
λ

x

)
dx (3.2)

with Np given by (2.1) and

�GC(r) = 2

(N2 − 1)!σ 2N2

∫ ∞

r

x2N2−3 exp

(
− x2

σ 2

)
�MC

( r
x

)
dx. (3.3)

A general relation between the characteristic functions

φGβ(tk) = 〈exp(ivk · tk)〉Gβ (tk = (t1, t2, . . . , tk))

and

φMβ(tk) = 〈exp(ivk · tk)〉Mβ
is derived directly from (2.19) expressed for the Gaussian case:

�Gβ(vk) = 1

CNβ

∫ ∞

‖vk‖
�Mβ

(vk

r

)
rNp−1−ke− r2

2σ2 dr

CNβ = 2
Np

2 −1σNp*

(
Np

2

) (3.4)

taking condition (2.21) into account. It is given by

φGβ(tk) = 1

CNβ

∫ ∞

0
φMβ(rtk)r

Np−1e− r2

2σ2 dr. (3.5)

As already known [3], the densities of states of the Gaussian ensembles tend asymptotically to
those of fixed-trace ensembles of the same symmetry (end of appendix A). As commented by
Mehta [3, p 380], it is still difficult to know if all local statistical properties of the eigenvalues
in the Gaussian and fixed-trace ensembles are asymptotically identical as n-level correlations
of the FTEs, that are related to those of Gaussian ensembles by (3.4) and (3.5), are not yet
explicitly known except for n = 2 given by equation (2.28) of [24]. However, the discussion
of the universality of spectral fluctuations of spherical random matrix ensembles presented
in [19] suggests that Gaussian ensembles and FTEs of a given symmetry belong to the same
universality class.

Equations (3.2)–(3.5) for k = 1, can all be expressed as Laplace transforms:

p(s) =
∫ ∞

0
exp(−sy)P (y) dy = L(P (y)) (3.6)

by a change of variable which transforms exp(− x2

aσ 2 )(a = 1 or 2) into exp(−sy). The k-
eigenvalues densities of the FTEs may also be obtained in theory, whatever k, from the
corresponding densities of the Gaussian ensembles via inverse one-dimensional Laplace
transforms. For k = 1 (3.5) becomes, for instance with y = r2t2 and s = 1/(2σ 2t2),

*

(
Np

2

)
s−

Np

2 φGβ

(
1√

2sσ 2

)
=
∫ ∞

0
φMβ(

√
y)y

Np

2 −1e−sy dy (3.7)

and thus

pφβ(s) = *

(
Np

2

)
s−

Np

2 φGβ

(
1√

2sσ 2

)
Pφβ(y) = L−1(pφβ(s)) φMβ(t) = t−(Np−2)Pφβ(t

2)

(3.8)
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Table 1. Level density �M2(λ)(−1 � λ � 1) for a FTE of Hermitian random matrices MN(2) for
2 � N � 6 (see also [24]).

N �M2(λ)

2 1

π
√
(1−λ2)

3 35
64 (1 − λ2)(1 − 2λ2 + 9λ4)

4 256
429π (1 − λ2)7/2(3 + 30λ2 − 212λ4 + 608λ6)

5 2028 117
8388 608 (1 − λ2)7(3 − 12λ2 + 898λ4 − 5996λ6 + 13 555λ8)

6 268 435 456
583 401 555π (1 − λ2)23/2

×(5 + 140λ2 − 4020λ4 + 70 504λ6 − 396 536λ8 + 774 922λ10)

where L−1 denotes the inverse Laplace transform. Similarly, taking λ � 0(�Mβ(−λ) =
�Mβ(λ)) in (3.2), we obtain with condition (2.21), y = x2/λ2 and s = λ2/(2σ 2),

p�β(s) = σ
√

2*

(
Np

2

)
s−

(Np−1)
2 �Gβ

(√
2sσ 2

)
P�β(y) = L−1(pMβ(s)) �Mβ(λ) = λ(Np−3)P�β

(
1

λ2

)
.

(3.9)

In the complex case, the radial density �MC(r) is finally calculated for σ = 1 from

p�C(s) = (N2 − 1)!s−(N
2−1)�GC(

√
s)

P�C(y) = L−1(p�C(s)) �MC(r) = r2(N2−2)P�C

(
1

r2

)
(3.10)

and from the density of the corresponding Gaussian ensemble (equation (2.13)). Appendix B
gives relations between the non-zero moments of the Gaussian ensembles and those of the FTEs
which are directly derived from equations (3.2) and (3.3). The Laplace transform method is
first illustrated with FTE(2) and then applied to FTE(1).

3.1. FTE(2)

The density �M2(λ) may be derived either from �G2(λ) (equations (2.3) and (3.9)) or from an
inversion of its cf φM2(t) which is obtained from φG2(t) (equations (2.5) and (3.8)). We have
chosen the latter path to further obtain the unknown φM2(t)(σ = 1/

√
2):

pφ2(s) = 1

N
*

(
N2

2

){ N−1∑
m=0

[
(−1)m

(
N

m+1

)
e− 1

4s

2mm!s
N2
2 +m

]}
.

From L−1( e−a/s
sn+1 ) = (

y

a
)n/2Jn(2

√
ay)(n > −1) (integral 6.643.4 of [28], where Jn(x) is a

Bessel function) we obtain

φM2(t) = 2
N2

2 −1

N
*

(
N2

2

){ N−1∑
m=0

[ (−1)m
(
N

m+1

)
JN2

2 −1+m
(t)

m!t
N2
2 −1−m

]}
. (3.11)

We have further verified that the moments 〈λ2k〉M2 calculated from an expansion of φM2(t)

agree with those obtained from (B.2). Integral 6.699.2 of [28] (0 < λ2/a2 < 1),∫ ∞

0
tαJν(at) cos(λt) dt = 2α*( 1+α+ν

2 )

*( ν−α+1
2 )

F

(
1 + α + ν

2
,

1 + α − ν

2
,

1

2
; λ

2

a2

)
(3.12)



2620 R Delannay and G Le Caër
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Figure 1. Density of states �M2(λ) (equation (3.14) and table 1) for FTE(2) and N = 3, 5, 7
(crosses = �M2(λ) calculated from Monte Carlo simulations with 5 × 107 matrices).

where F(a, b, c; z) is a hypergeometric function, and equation (3.11) yield (−1 � λ � 1)

�M2(λ) = *(N
2

2 )

Nπ*(N
2−1
2 )

×
{ N−1∑
m=0

(−1)m2m

m!

(
N

m + 1

)
*

(
m +

1

2

)
F

(
m +

1

2
,

3 −N2

2
,

1

2
; λ2

)}
.

(3.13)

F(m + 1
2 ,

3−N2

2 , 1
2 ; λ2) may be further expressed with the help of Gegenbauer polynomials

Cα2m(λ) to yield, finally,

�M2(λ) = (N
2

2 − 1)

Nπ*(N
2−1
2 )

(1 − λ2)
N2−2N−1

2

×
{ N−1∑
m=0

(−1)m
(

N

m + 1

)
2m*(m + 1

2 )(1 − λ2)N−1−m

×
[ m∑
j=0

(−1)j (2λ)2j

(2j)!(m− j)!
*

(
N2

2
− 1 + j

)]}
. (3.14)

As explained in the introduction, the density, equation (3.14) (table 1 for 2 � N � 6 and
figure 1 for N = 3, 5, 7), is identical with the density published very recently by Akemann
et al [24]. The density exhibits N local maxima for −1 < λ < 1. From (3.11), we deduce
the asymptotic form of φM2(t), φM2(t) ∼ (N1/2/t)J1(2t/N1/2), which is as expected the
characteristic function of a Wigner semicircle of radius a∞ = 2/N1/2 (equation (2.12)) as
〈λ2〉M2 = 1/N = a2

∞/4. The thermodynamic limit is thus obtained for a FTE(2) associated
with a sphere of radius R ∝ N1/2, as found also for the GUE (appendix A). The Wigner
semicircle is already an excellent numerical approximation of �M2(λ) for N as small as 50.
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Table 2. Level density �M1(λ)(−1 � λ � 1) for a FTE of real-symmetric random matricesMN(1)
for 2 � N � 5.

N �M1(λ)

2 1
2
√

2
{I[0, 1√

2
[(|λ|) + I[ 1√

2
,1[(|λ|) |λ|√

(1−λ2)
}

3 I[0, 1√
2

](|λ|)( 16
√

2
9π (1 − 2λ2)

3
2 ) + I[0,1](|λ|)[ 8

9π (1 − λ2)
1
2 (7λ2 − 1)]

4 I[0, 1√
2

](|λ|)


 16

√
2

35π
(1−2λ2)5/2

(1−λ2)




3(1 + 11λ2 − 12λ4)

+70λ4S2(
4λ2

1−λ2 )

−7λ2(1 − 2λ2)S3(
4λ2

1−λ2 )






+I[ 1√
2
,1](|λ|)[ 3√

2
|λ|(5λ2 − 1)(1 − λ2)2]

with Sp(z) =∑∞
k=0

(p+k)!(k+1)!
(2k+2)! zk, p = 2, 3

5 3003
10 240

{
I[0, 1√

2
](|λ|)(

√
2(1 − 2λ2)4(1 + 44λ2 + 68λ4))

+I[0.1](|λ|)[(1 − λ2)4(1 − 50λ2 + 209λ4)]

}

3.2. FTE(1)

The expressions of the characteristic function and of the density of states are complicated in
the real symmetric case. Expressions of91t ,92t ,910,920, S10, S20, S1E , S2E1, S2E2 which are
needed to calculate them from (3.15)–(3.18) below are given in appendix C. A characteristic
function φM1(t) which is valid whatever N and involves infinite sums can be derived from
φG1(t) (equations (2.9) and (3.8)):

φM1(t) = 2
Np

2 −1

N
*

(
Np

2

)
{91t −92t }. (3.15)

Simpler expressions can be calculated for N = 2p + 1 by inverting the characteristic
function φM1(t) which is obtained from φG1(t) (equations (2.10) and (3.8)). Using the same
method as in section 3.1, lengthy calculations yield the density �M1(λ) from the expansion
of Laguerre and Hermite polynomials in φG1(t) and from the inverse Laplace transform of
L−1( e−a/s

sn+1 ):

φM1(t) = 2
Np

2 −1

N
*

(
Np

2

)
{910 +920}. (3.16)

Expressing, as before, hypergeometric functions in terms of Gegenbauer polynomials, we
finally obtain for N = 2p + 1 that

�M1(λ) = (
Np
2 − 1)

Nπ*(
Np−1

2 )
(I[0,1](|λ|)S10 + I[0, 1√

2
](|λ|)S20). (3.17)

For N = 2p(p � 2), the density �M1(λ) is calculated directly via (3.9) from an inverse
Laplace transform of the density �G1(λ) (equations (2.6) and (2.8)):

�M1(λ) = I[ 1√
2
,1](|λ|)SIE + I[0, 1√

2
](|λ|)(S2E1 + S2E2). (3.18)

Densities of states are explicitly given in table 2 for small values of N (introduction),
2 � N � 5, and are compared to simulated densities in figure 2. Appendix D discusses
further the distributions of the eigenvalue spacings for FTE(β) and N = 2 as the distributions
of spacings between successive eigenvalues of large matrices are well represented by those of
ensembles of N = 2 matrices [38–41]. The underlying similarity of FTE(1) and of FTE(2)
which originates from the unit sphere is more clearly seen on characteristic functions than it
is on densities of states.
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Figure 2. Density of states �M1(λ) (equations (3.17) and (3.18) and table 2) for FTE(1) and
N = 3, 4, 5 (crosses = �M1(λ) calculated from Monte Carlo simulations with 5 × 107 matrices).

Table 3. Density �MC(r)(0 � r � 1) for a FTE of complex random matrices MN(C) for
2 � N � 5.

N �MC(r)

2 3
2π (1 − r4)

3 8
3π (1 − r2)5(1 + 5r2 + 15r4)

4 15
4π (1 − r2)11(1 + 11r2 + 66r4 + 286r6)

5 24
5π (1 − r2)19(1 + 19r2 + 190r4 + 1330r6 + 7315r8)

3.3. FTE(c)

The radial density �MC(r) is calculated from �GC(r) ((2.13), σ = 1) using (3.10) with

p�C(s) = (N2 − 1)!

Nπ

[ N−1∑
k=0

e−s

k!s(N2−1−k)

]
.

From L−1( e−s
sn+1 ) = (y−1)n

n! for integer n � 0 and y > 1 and with y = 1/r2 (equation (3.10)),
the FTE(c) radial density is finally given by (0 � r < 1)

�MC(r) = (N2 − 1)

Nπ
(1 − r2)N

2−N−1

[ N−1∑
m=0

(
N2 −N − 2 +m

m

)
r2m

]
. (3.19)

The bracketed polynomial in the right of density (3.19) is recognized to be a truncated expansion
of (1 − r2)−(N

2−N−1) which ensures that �MC(r) is asymptotically constant on a disc of radius
N−1/2 (section 2.1). Appendix B describes a direct calculation of the moments 〈rm〉MC . Table 3
gives �MC(r) for 2 � N � 5 and figure 3 compares theoretical radial densities to simulated
ones for N = 2, 3, 5.
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Figure 3. Radial density �MC(r) (equation (3.19) and table 3) for FTE(c) and N = 2, 3, 5
(crosses = �MC(r) calculated from Monte Carlo simulations with 5 × 107 matrices).

4. Some large-N densities of states

We describe further applications of the relation between the densities of spherical ensembles
and those of the FTEs (equation (2.19)) to the calculation of asymptotic densities of states of
some ensembles which were briefly considered in [19]. For large N , (2.22) becomes

�∞(λ) = lim
N→∞

∫ ∞

|λ|
γNr

(Np−3)g

(
Nr2

4

)
(r2 − λ2)1/2 dr (4.1)

with

ϕN =
∫ ∞

0
r(Np−1)g(r2) dr γN = N(Np/2)/(2(Np−1)πϕN).

We consider first orthogonal (CLOE) and unitary (CLUE) Cauchy–Lorentz ensembles,
whose associated Vect(HN) are distributed according to a spherical Cauchy distribution [22,
34], with a characteristic function [35]

φ(t) = 〈exp(it · Vect(HN))〉 = exp

(
− γ

[ Np∑
k=1

t2k

]1/2)

that is

pβ(HN) = Kβ,N

(1 + tr(H 2
N )

γ 2 )
(Np+1)

2

. (4.2)

Here γ 2 = α2
G/N , (αG = constant), g(r2) = 1/(1 + r2/γ 2)(Np+1)/2. The marginal distribution

of every distinct matrix element (section 2) is thus a Cauchy distribution:

fβ(Bij ) = π
√
(2 − δij )

4γ

1

1 +
B2
ij

γ 2 (2 − δij )

(4.3)

where Bij is the matrix element Hij for β = 1 while it is either a diagonal element or the
real or imaginary part of a non-diagonal element for β = 2. The Lévy ensembles of random
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matrices [36] with α = 1 have also distinct matrix elements (with characteristic function
φα(t) = exp(−γ |t |α)) which are Cauchy distributed but they are independently distributed in
contrast to those considered here. Consequently, the distribution of any linear combination
of k(k > 1) non-diagonal matrix elements with equal weights k−1/2 is still given by (4.3) as
deduced from the characteristic function φ(t) (see (2.14) and appendix A). For independent
entries with distribution (4.3), the latter linear combination would have a broader Cauchy
distribution as γ would be multiplied by k1/2. Equation (4.1) yields [19]

�β,1,∞(λ) = C1

[
1 −

∫ π
2

0
cos(θ) exp(−y(λ, θ)) dθ

]
(4.4)

y(λ, θ) = βα2
G

cos2(θ)

λ2
(4.5)

with C1 = 2π−3/2β−1/2α−1
G . For small λ, distribution (4.4) has a parabolic variation and is

flatter than a Lorentz line whose maximum density is chosen as C1. It decreases as λ−2 as
λ → ±∞ and has diverging moments.

Using (4.1), density (4.4) is generalized to orthogonal or unitary Student’s [22] RMEs for
which the exponent of the Cauchy distribution (Np + 1)/2 (4.2) is replaced by (Np + m)/2
(and Kβ,N by Kβ,m,N ) where m is an integer (m � 1):

�β,m,∞(λ) = Cm

∫ π
2

0

(
cosm(θ)

|λ|m+1
exp(−y(λ, θ)) sin2(θ)

)
dθ (4.6)

(Cm = 4βm/2αmG/(π*(m/2)) where αG can be chosen to depend on m). When m = 2k + 1,
(4.6) may also be expressed as

�β,2k+1,∞(λ) = C2k+1

[
1 −

∫ π
2

0
cos(θ) exp(−y(λ, θ))ek(y(λ, θ)) dθ

]
(4.7)

ek(x) =
k∑
j=0

xj

j !
(4.8)

(C2k+1 = 22k+1π−3/2β−1/2α−1
G (k!)2/(2k!)). The density �β,m,∞(λ) varies as |λ|−(m+1) when

λ → ±∞ and parabolically for small values of λ. When m increases, the densities evolve
progressively to the Wigner semicircle as shown by figure 4. When β1/2αG is chosen so that
C2k+1 = (2/π)3/2, the even moments of �β,2k+1,∞(λ) are indeed (n � k):

〈λ2n〉 = (2n)!(2k − 2n)!(k!)4n+124nk−n/[n!(n + 1)!(k − n)!((2k)!)2n+1]. (4.9)

The latter moments tend for large k to 〈λ2n〉∞ = (π/8)n(2n)!/[n!(n+1)!] which coincide with
the corresponding moments of the Wigner semi circle of radius a∞ = (π/2)1/2.

5. Conclusions

Exact expressions have been obtained respectively for the densities of states and the radial
density of real-symmetric, Hermitian and complex ensembles of random matrices associated
with a uniform distribution of a random vector on the surface of aNp-dimensional unit sphere.
The exact density �S(λ) of any spherical ensemble of N × N random matrices of a given
symmetry can be finally obtained from the �M(λ) of the FTE of the same symmetry by a single
one-dimensional integration involving �M and f (r) (equation (2.20)), where f (r) dr is the
probability of finding a Np-dimensional sphere of radius r � R � r + dr .

The method used in the present work might as well be extended to other RMEs, for instance
to the symplectic ensemble FTE(4) or the ensemble of antisymmetric Hermitian matrices [3].
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Figure 4. Asymptotic density of states �∞(λ) (equation (4.7)) for the unitary Student’s RMEs
with odd values of m: m = 1 (Cauchy–Lorentz ensemble [19]), m = 5, 11, 131 and W =
Wigner semicircle �w(λ) = (4/π2)(π/2 − λ2)1/2(m = ∞) (crosses = results obtained from
Monte Carlo simulations with 5 × 107 matrices).

Other characterizations of the FTEs are desirable, for instance the determination of exact
k-eigenvalue correlations as done for the unitary ensemble and k = 2 by Akemann et al [24].

Determinant distributions of FTEs have been derived from methods similar to those
described here [25]. Exact results for FTEs may be of interest in relation to the probability
distributions of various physical properties of disordered solids.

The asymptotic behaviour indicates that the matrices associated with ‘typical’ unit
vectors, whose extremities are taken at random on the surface of the Np-sphere, have Wigner
semicircular densities for large N . The unit sphere surface provides a unifying way of
considering spherical random matrix ensembles of different symmetries. For large N , both
Gauss and Wigner distributions are simply retrieved from the unit sphere surface.
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Appendix A. Uniform distribution on the surface of the unit sphere in IR
Np

The joint distribution of n(<Np) components,U(i), i = 1, . . . , n, of a unit vector U (Np) which
is uniformly distributed on the surface of the unit sphere in IRNp is [22]

gNp(U(1), . . . , U(n)) = *(Np/2)

*((Np − n)/2)πn/2

(
1 −

n∑
i=1

U(i)2
)Np−n−2

2

n∑
i=1

U(i)2 � 1

(A.1)
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where *(x) is the usual gamma function. Distribution (A.1) is, for instance, derived from the

definition of a Dirichlet distribution [22] and from the fact thatU (Np)
d= G(Np)/‖G(Np)‖ [22,32],

where G(Np) is aNp-dimensional vector whose components are identically and independently
distributed N(0, 1) Gaussian random variables.

For a spherical random vector X(Np), the distribution of every linear form y = a · X(Np)

is the same for all vectors a, where a = (a1 . . . , aNp ), provided that S = ∑Np
i=1 a

2
i =

1 [22, p 31], [32, p 51] as seen, for instance, from the characteristic function 〈eity〉 =
〈eia·X(Np)〉 = φ(|t |√S) = φ(|t |) (equation (2.14)) whatever the ai’s. The distribution of
y = (U(j) + U(k))/

√
2 (j = k) needed in appendix D is thus identical with the distribution

of any component U(l): y
d= U(l). Similarly, the distribution of tr(MN(β))/N

1/2(MN =
Mat(U (Np))) is given by (A.1) with n = 1.

Expressing MN(β)
2 in terms of the components of the unit vector U (Np)(β), squaring all

matrix elements, summing up and averaging using distribution (A.1), we derive, independently
from the calculation presented in section 3, the fourth moment 〈λ4〉Mβ = ∫ +1

−1 �Mβ(λ)λ
4dλ as

〈λ4〉M1 = (2N2 + 5N + 5)/[N(N + 1)(N2 +N + 4)]

and

〈λ4〉M2 = (2N2 + 1)/[N2(N2 + 2)]

for β = 1 and 2 respectively. The second moment, 〈λ2〉Mβ = 1/N , follows immediately from
tr(M2

N(β)) = 1. The ratio: limN→∞〈λ4〉Mβ/〈λ2〉2
Mβ = 2 as expected for a Wigner semicircle

(equation (2.11)) which is the asymptotic eigenvalue density of the FTE(β). A simple argument
is that the GOE and GUE, whose asymptotic densities are Wigner semicircles of radii aβ∞, tend
for largeN to FTEs, as z = tr(S2

N)/σ
2 has a chi-square distribution withNp degrees of freedom

which results in 〈(z − 〈z〉)2〉1/2/〈z〉 ∝ N−1. For large N , the radius of the associated sphere
is thus R = σ 〈tr(S2

N)〉1/2 = σN(β/2)1/2. The second moment 〈λ2〉Gβ = σ 2Nβ/2 = a2
β∞/4

gives then the usual scaling σ ∝ N−1/2, that is R ∝ N1/2, for the GOE and the GUE.

Appendix B. Moments of the FTEs

Relations between the non-zero moments of the Gaussian ensembles and those of the FTEs
are directly derived from equations (3.2) and (3.3). The moments

〈λ2k〉Xβ =
∫ +A

−A
�Xβ(λ)λ

2k dλ (B.1)

where A = ∞, 1 for X = G,M respectively, satisfy

〈λ2k〉Mβ = 〈λ2k〉Gβ
/[

2kσ 2k
k∏
i=1

(
Np

2
+ i − 1

)]
(B.2)

In the complex case, the moments of pGC(r) = 2πr�GC(r) and of pMC(r) = 2πr�MC(r)

are related through (3.3):

〈rm〉MC = 〈rm〉GC
(

(N2 − 1)!

σm*(N2 + m
2 )

)
. (B.3)

Using (2.15) with σ = 1 and [37], we obtain

〈rm〉GC = 1

N

N−1∑
k=0

1

k!
*
(
k +

m

2
+ 1
)

= *(m2 + 1)

N

N−1∑
k=0

(
k + m

2
k

)
.
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That is,

〈rm〉GC = *(m2 + 1)

N

(
N + m

2
N − 1

)
= 2

(m + 2)

*(N + m
2 + 1)

N !

and thus

〈rm〉MC =
(

2

m + 2

)(
(N2 − 1)!

*(N2 + m
2 )

)(
*(N + m

2 + 1)

N !

)
. (B.4)

For a constant asymptotic density �GC∞(r) = N/π for r � N−1/2 (section 3.3) and 0

otherwise, the moments are indeed 〈rm〉MC∞ = ∫ N−1/2

0 2Nrm+1 dr = 2
(m+2)Nm/2 as consistently

found from (B.4) for large N .

Appendix C. Characteristic function φM1(t) and density of states �M1(λ) of FTE(1)

The expressions needed to calculate the characteristic function φM1(t), and the density of states
�M1(λ) (equations (3.15)–(3.18)) are given below. The characteristic function φM1(t) given
by (3.17) is obtained from

91t =
N−1∑
m=0



(−1)m

(
N

m + 1

)
2
Np

4 − 1
2 − m

2

m!
×

J Np

2 −1+m(
t√
2
)

t
Np

2 −1−m




and

92t =
(
*(N+1

2 )(N − 1)!

*(N2 )

)1
2 ∞∑
m=0

[
(−1)m@N,m2

Np

4 − m
2 −1 ×

J Np

2 +m(
t√
2
)

t
Np

2 −m−2

]

with

@N,m =
n∑
k=0

(
N + 2m− 2k + 1
N − 1 − k

)
k!

(
*(m− k + 1 + N

2 )

*(m− k + N+3
2 )(2m− 2k +N + 1)!

)1
2

(n = m+N−1
2 − |m−N+1

2 | = min(m,N − 1)).
For N odd, φM1(t) is obtained from (3.16) with

910 =
p∑

m=0



(−1)m

(
p

m

)√
π

*(m + 1
2 )

×
J Np

2 −1+m(t)

t
Np

2 −1−m




and

920 =
2p−2∑
m=0

[
(−1)mαp,m2

Np

4 − 1
2 − m

2 ×
J Np

2 −1+m(
t√
2
)

t
Np

2 −1−m

]

with

αp,m =

(
2p + 1
m + 1

)
m!

−
p−|p−m|∑
k=0



*(p − k + 1

2 )

(
2p
m + k

)
2k*(p + 1

2 )(m− k)!


 .
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For N = 2p + 1, the density �M1(λ) is calculated from (3.17) with

S10 = √
πp!

{ p∑
m=0

(−2)m
(1 − λ2)

Np−3
2 −m

(p −m)!
×
[ m∑
j=0

(−1)j (2λ)2j*(Np2 − 1 + j)

(2j)!(m− j)!

]}

and

S20 =
{ 2p−2∑
m=0

(−1)m2m+1/2*(m + 1
2 )m!αp,m(1 − 2λ2)

Np−3
2 −m

×
[ m∑
j=0

(−1)j23jλ2j*(
Np
2 − 1 + j)

(2j)!(m− j)!

]}

while �M1(λ) is calculated from (3.18) for N = 2p(p � 2) with

S1E = (−1)p*(p + 1
2 )*(

Np
2 )

N
√

2π
×
{ p∑
m=1

(−1)m
23m−1|λ|2m−1(1 − λ2)

Np

2 −m−1

(p −m)!(2m− 1)!*(Np2 −m)

}

and

S2E1 =
√

2(Np2 − 1)

Nπ*(
Np−1

2 )

{ 2p−3∑
m=1

(−1)m*(m + 1
2 )2

m(1 − 2λ2)
Np−3

2 −mβp,m9m(λ)
}

9m(λ) =
m∑
k=0

(−1)k
*(

Np
2 − 1 + k)23kλ2k

(m− k)!(2k)!

βp,m =
(

2p
m + 1

)
−9

p− 1
2 −|p− 1

2 −m|
k=0



(p − 1 − k)!m!

(
2p − 1
m + k

)
2k(p − 1)!(m− k)!


 .

Finally,

S2E2 = (−1)p*(p + 1
2 )*(

Np
2 )

√
2

2Nπ(1 − λ2)

×
{ p∑
m=1

(−1)m
23mλ2m(1 − 2λ2)

Np−1
2 −m

(p −m)!(2m− 1)!*(Np−1
2 −m)

×F
(

1,
Np

2
−m,

3

2
; λ2

1 − λ2

)}
where

F

(
1,
Np

2
−m,

3

2
,

λ2

1 − λ2

)
= 2

(
Np
2 −m− 1)!

∞∑
k=0

(
Np
2 −m− 1 + k)!(k + 1)!

(2k + 2)!

(
4λ2

1 − λ2

)k

Appendix D. Spacing distributions for the FTE(β) ensembles with β = 1, 2, N = 2

The distributions of level spacings of large matrices are known to be well approximated
by those of ensembles of N = 2 matrices [38–41]. The small spacing behaviour of
Gaussian ensembles, p(s) ∝ sβ , can indeed be reproduced by considering 2 × 2 matrices
as a very close encounter of two levels is only weakly influenced by other levels [40, 41].
The eigenvalue spacing p2(s) of matrices M2(β) (equation (2.18)) is s =

√
(2 − x2) where

x = U(1) + U(2 + β)(−√
2 � x �

√
2).
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From x
d= U(1)

√
2 and (A.1) with n = 1 and Np = 2 + β, the distribution of x is found

to be uniform for β = 1, h(x) = 1/(2
√

2), while h(x) =
√
(2 − x2)/π for β = 2.

The distribution p2(s)(c1 = 1/
√

2, c2 = 2/π):

p2(s) = cβs
β
/√

(2 − s2) 0 � s �
√

2 (D.1)

yields further the spacing distribution for spherical ensembles with densitiesg(tr(S2
N))(N = 2):

p2(s) ∝ sβ
∫ ∞

s2
2

g(x)√
x − s2

2

dx. (D.2)

Distribution (D.1) varies as sβ for small s as do distributions (D.2) when the integral in (D.2)
converges.
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